vm.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. /*****************************************************************
  2. * vm.c
  3. * adapted from MIT xv6 by Zhiyi Huang, [email protected]
  4. * University of Otago
  5. *
  6. ********************************************************************/
  7. #include "param.h"
  8. #include "types.h"
  9. #include "defs.h"
  10. #include "arm.h"
  11. #include "memlayout.h"
  12. #include "mmu.h"
  13. #include "proc.h"
  14. #include "elf.h"
  15. extern char data[]; // defined by kernel.ld
  16. extern char end[]; // defined by kernel.ld
  17. pde_t *kpgdir; // for use in scheduler()
  18. // Return the address of the PTE in page table pgdir
  19. // that corresponds to virtual address va. If alloc!=0,
  20. // create any required page table pages.
  21. static pte_t *
  22. walkpgdir(pde_t *pgdir, const void *va, uint l1attr, int alloc)
  23. {
  24. pde_t *pde;
  25. pte_t *pgtab;
  26. pde = &pgdir[PDX(va)];
  27. if((uint)*pde != 0){
  28. pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
  29. } else {
  30. if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
  31. return 0;
  32. // Make sure all those PTE_P bits are zero.
  33. memset(pgtab, 0, PGSIZE);
  34. // The permissions here are overly generous, but they can
  35. // be further restricted by the permissions in the page table
  36. // entries, if necessary.
  37. *pde = v2p(pgtab) | l1attr;
  38. //cprintf("the pde value is %x\n", (uint)*pde);
  39. }
  40. return &pgtab[PTX(va)];
  41. }
  42. // Create PTEs for virtual addresses starting at va that refer to
  43. // physical addresses starting at pa. va and size might not
  44. // be page-aligned.
  45. static int
  46. mappages(pde_t *pgdir, void *va, uint size, uint pa, uint l1attr, uint l2attr)
  47. {
  48. char *a, *last;
  49. pte_t *pte;
  50. a = (char*)PGROUNDDOWN((uint)va);
  51. last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
  52. //cprintf("size= %x a=%x last= %x pa=%x\n", size, a, last, pa);
  53. if((SECTION & l1attr) != 0){// for 1 MB pages
  54. for(;;){
  55. if(a > last) break;
  56. if((uint)pgdir[PDX(a)] != 0) panic("remap");
  57. pgdir[PDX(a)] = pa | l1attr;
  58. //cprintf("The pgdir entry: %x value: %x a=%x last= %x\n", PDX(a), pgdir[PDX(a)], a, last);
  59. a += MBYTE;
  60. pa += MBYTE;
  61. }
  62. } else if((COARSE & l1attr) != 0){// for 4kB pages
  63. for(;;){
  64. //cprintf("The pgdir is %x value: %x a=%x last= %x\n", pgdir+PDX(a), pgdir[PDX(a)], a, last);
  65. if((pte = walkpgdir(pgdir, a, l1attr, 1)) == 0)
  66. return -1;
  67. if((uint)*pte != 0) panic("remap");
  68. *pte = pa | l2attr;
  69. //cprintf("The pte value is %x, the pde values is %x\n", (uint)*pte, pgdir[PDX(a)]);
  70. if(a == last) break;
  71. a += PGSIZE;
  72. pa += PGSIZE;
  73. }
  74. } else panic("Unknown page attribute");
  75. return 0;
  76. }
  77. // There is one page table per process, plus one that's used when
  78. // a CPU is not running any process (kpgdir). The kernel uses the
  79. // current process's page table during system calls and interrupts;
  80. // page protection bits prevent user code from using the kernel's
  81. // mappings.
  82. //
  83. // setupkvm() and exec() set up every page table like this:
  84. //
  85. // 0..KERNBASE: user memory (text+data+stack+heap), mapped to
  86. // phys memory allocated by the kernel
  87. // KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
  88. // KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
  89. // for the kernel's instructions and r/o data
  90. // data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
  91. // rw data + free physical memory
  92. // 0xfe000000..0: mapped direct (devices such as ioapic)
  93. //
  94. // The kernel allocates physical memory for its heap and for user memory
  95. // between V2P(end) and the end of physical memory (PHYSTOP)
  96. // (directly addressable from end..P2V(PHYSTOP)).
  97. // This table defines the kernel's mappings, which are present in
  98. // every process's page table.
  99. static struct kmap {
  100. void *virt;
  101. uint phys_start;
  102. uint phys_end;
  103. uint l1attr;
  104. uint l2attr;
  105. } kmap[] = {
  106. { (void*)KERNBASE, PA_START, PHYSTOP, DOMAIN0|PDX_AP(U_RW)|SECTION|CACHED|BUFFERED, 0},
  107. { (void*)DEVSPACE, PHYSIO, PHYSIO+IOSIZE, DOMAIN0|PDX_AP(U_RW)|SECTION, 0},
  108. { (void*)HVECTORS, PA_START, PA_START+TVSIZE, DOMAIN0|COARSE, PTX_AP(K_RW)|SMALL},
  109. };
  110. // Set up kernel part of a page table.
  111. // However, since the kernel part is shared, only the user part
  112. // of the pgd is allocated (one page only for simplicity, so user space
  113. // is now limited to 1GB
  114. pde_t*
  115. setupkvm(void)
  116. {
  117. pde_t *pgdir;
  118. if((pgdir = (pde_t*)kalloc()) == 0)
  119. return 0;
  120. //cprintf("inside setupkvm: pgdir=%x\n", pgdir);
  121. memset(pgdir, 0, PGSIZE);
  122. //cprintf("after memset\n", pgdir);
  123. return pgdir;
  124. }
  125. // Set up kernel part of a page table.
  126. pde_t*
  127. setupkvm_new(void)
  128. {
  129. pde_t *pgdir;
  130. struct kmap *k;
  131. /* if((pgdir = (pde_t*)kalloc()) == 0)
  132. return 0;*/
  133. pgdir = kpgdir;
  134. memset(pgdir, 0, 4*PGSIZE);
  135. if (p2v(PHYSTOP) > (void*)DEVSPACE)
  136. panic("PHYSTOP too high");
  137. for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
  138. if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
  139. (uint)k->phys_start, k->l1attr, k->l2attr) < 0)
  140. return 0;
  141. return pgdir;
  142. }
  143. // Allocate one page table for the machine for the kernel address
  144. // space for scheduler processes.
  145. void
  146. kvmalloc(void)
  147. {
  148. kpgdir = setupkvm_new();
  149. switchkvm();
  150. }
  151. // Switch h/w page table register to the kernel-only page table,
  152. // for when no process is running.
  153. void
  154. switchkvm(void)
  155. {
  156. // do nothing here as the same pgdir is shared between kernel and user;
  157. // will see if the user portion of the pgdir should be removed.
  158. }
  159. void
  160. switchkvm_new(void)
  161. {
  162. dsb_barrier();
  163. flush_idcache();
  164. //cprintf("The phy pgtbase address is %x\n", (uint)v2p(kpgdir));
  165. set_pgtbase((uint)v2p(kpgdir)); // switch to the kernel page table
  166. //cprintf("after set_pgtbase\n");
  167. dsb_barrier();
  168. flush_tlb();
  169. //cprintf("after flush_tlb\n");
  170. }
  171. // Switch TSS and h/w page table to correspond to process p.
  172. void
  173. switchuvm(struct proc *p)
  174. {
  175. pushcli();
  176. //cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
  177. if(p->pgdir == 0)
  178. panic("switchuvm: no pgdir");
  179. //cprintf("before copying uvm to kvm kpgdir=%x the first entry: %x\n", kpgdir, kpgdir[0]);
  180. memmove((void *)kpgdir, (void *)p->pgdir, PGSIZE); // switch to new user address space
  181. flush_idcache();
  182. flush_tlb();
  183. popcli();
  184. }
  185. // Load the initcode into address 0 of pgdir.
  186. // sz must be less than a page.
  187. void
  188. inituvm(pde_t *pgdir, char *init, uint sz)
  189. {
  190. char *mem;
  191. if(sz >= PGSIZE)
  192. panic("inituvm: more than a page");
  193. mem = kalloc();
  194. memset(mem, 0, PGSIZE);
  195. //cprintf("inituvm: page is allocated at %x\n", mem);
  196. mappages(pgdir, 0, PGSIZE, v2p(mem), UVMPDXATTR, UVMPTXATTR);
  197. memmove(mem, init, sz);
  198. }
  199. // Load a program segment into pgdir. addr must be page-aligned
  200. // and the pages from addr to addr+sz must already be mapped.
  201. int
  202. loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
  203. {
  204. uint i, pa, n;
  205. pte_t *pte;
  206. if((uint) addr % PGSIZE != 0)
  207. panic("loaduvm: addr must be page aligned");
  208. if((uint)addr + sz > USERBOUND)
  209. panic("loaduvm: user address space exceeds the allowed space (> 0x80000000)");
  210. for(i = 0; i < sz; i += PGSIZE){
  211. if((pte = walkpgdir(pgdir, addr+i, UVMPDXATTR, 0)) == 0)
  212. panic("loaduvm: address should exist");
  213. pa = PTE_ADDR(*pte);
  214. if(sz - i < PGSIZE)
  215. n = sz - i;
  216. else
  217. n = PGSIZE;
  218. if(readi(ip, p2v(pa), offset+i, n) != n)
  219. return -1;
  220. }
  221. return 0;
  222. }
  223. // Allocate page tables and physical memory to grow process from oldsz to
  224. // newsz, which need not be page aligned. Returns new size or 0 on error.
  225. int
  226. allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
  227. {
  228. char *mem;
  229. uint a;
  230. if(newsz >= USERBOUND)
  231. return 0;
  232. if(newsz < oldsz)
  233. return oldsz;
  234. a = PGROUNDUP(oldsz);
  235. for(; a < newsz; a += PGSIZE){
  236. mem = kalloc();
  237. if(mem == 0){
  238. cprintf("allocuvm out of memory\n");
  239. deallocuvm(pgdir, newsz, oldsz);
  240. return 0;
  241. }
  242. memset(mem, 0, PGSIZE);
  243. mappages(pgdir, (char*)a, PGSIZE, v2p(mem), UVMPDXATTR, UVMPTXATTR);
  244. }
  245. return newsz;
  246. }
  247. // Deallocate user pages to bring the process size from oldsz to
  248. // newsz. oldsz and newsz need not be page-aligned, nor does newsz
  249. // need to be less than oldsz. oldsz can be larger than the actual
  250. // process size. Returns the new process size.
  251. int
  252. deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
  253. {
  254. pte_t *pte;
  255. uint a, pa;
  256. if(newsz >= oldsz)
  257. return oldsz;
  258. a = PGROUNDUP(newsz);
  259. for(; a < oldsz; a += PGSIZE){
  260. pte = walkpgdir(pgdir, (char*)a, UVMPDXATTR, 0);
  261. if(!pte)
  262. a += (NPTENTRIES - 1) * PGSIZE;
  263. else if(*pte != 0){
  264. pa = PTE_ADDR(*pte);
  265. if(pa == 0)
  266. panic("kfree");
  267. char *v = p2v(pa);
  268. kfree(v);
  269. *pte = 0;
  270. }
  271. }
  272. return newsz;
  273. }
  274. // Free a page table and all the physical memory pages
  275. // in the user part.
  276. void
  277. freevm(pde_t *pgdir)
  278. {
  279. uint i;
  280. if(pgdir == 0)
  281. panic("freevm: no pgdir");
  282. deallocuvm(pgdir, USERBOUND, 0);
  283. for(i = 0; i < NPDENTRIES; i++){
  284. if((uint)pgdir[i] != 0){
  285. char * v = p2v(PTE_ADDR(pgdir[i]));
  286. kfree(v);
  287. }
  288. }
  289. kfree((char*)pgdir);
  290. }
  291. // Clear PTE_U on a page. Used to create an inaccessible
  292. // page beneath the user stack.
  293. void
  294. clearpteu(pde_t *pgdir, char *uva)
  295. {
  296. pte_t *pte;
  297. pte = walkpgdir(pgdir, uva, UVMPDXATTR, 0);
  298. if(pte == 0)
  299. panic("clearpteu");
  300. *pte &= ~PTX_AP(U_AP);
  301. }
  302. // Given a parent process's page table, create a copy
  303. // of it for a child.
  304. pde_t*
  305. copyuvm(pde_t *pgdir, uint sz)
  306. {
  307. pde_t *d;
  308. pte_t *pte;
  309. uint pa, i, flags;
  310. char *mem;
  311. if((d = setupkvm()) == 0)
  312. return 0;
  313. for(i = 0; i < sz; i += PGSIZE){
  314. if((pte = walkpgdir(pgdir, (void *) i, UVMPDXATTR, 0)) == 0)
  315. panic("copyuvm: pte should exist");
  316. if((uint)*pte == 0)
  317. panic("copyuvm: page not present");
  318. pa = PTE_ADDR(*pte);
  319. flags = PTE_FLAGS(*pte);
  320. if((mem = kalloc()) == 0)
  321. goto bad;
  322. memmove(mem, (char*)p2v(pa), PGSIZE);
  323. if(mappages(d, (void*)i, PGSIZE, v2p(mem), UVMPDXATTR, flags) < 0)
  324. goto bad;
  325. }
  326. return d;
  327. bad:
  328. freevm(d);
  329. return 0;
  330. }
  331. //PAGEBREAK!
  332. // Map user virtual address to kernel address.
  333. char*
  334. uva2ka(pde_t *pgdir, char *uva)
  335. {
  336. pte_t *pte;
  337. pte = walkpgdir(pgdir, uva, UVMPDXATTR, 0);
  338. if((uint)*pte == 0)
  339. return 0;
  340. if(((uint)*pte & PTX_AP(U_AP)) == 0)
  341. return 0;
  342. return (char*)p2v(PTE_ADDR(*pte));
  343. }
  344. // Copy len bytes from p to user address va in page table pgdir.
  345. // Most useful when pgdir is not the current page table.
  346. // uva2ka ensures this only works for PTE_U pages.
  347. int
  348. copyout(pde_t *pgdir, uint va, void *p, uint len)
  349. {
  350. char *buf, *pa0;
  351. uint n, va0;
  352. buf = (char*)p;
  353. while(len > 0){
  354. va0 = (uint)PGROUNDDOWN(va);
  355. pa0 = uva2ka(pgdir, (char*)va0);
  356. if(pa0 == 0)
  357. return -1;
  358. n = PGSIZE - (va - va0);
  359. if(n > len)
  360. n = len;
  361. memmove(pa0 + (va - va0), buf, n);
  362. len -= n;
  363. buf += n;
  364. va = va0 + PGSIZE;
  365. }
  366. return 0;
  367. }