/***************************************************************** * vm.c * adapted from MIT xv6 by Zhiyi Huang, hzy@cs.otago.ac.nz * University of Otago * ********************************************************************/ #include "param.h" #include "types.h" #include "defs.h" #include "arm.h" #include "memlayout.h" #include "mmu.h" #include "proc.h" #include "elf.h" extern char data[]; // defined by kernel.ld extern char end[]; // defined by kernel.ld pde_t *kpgdir; // for use in scheduler() // Return the address of the PTE in page table pgdir // that corresponds to virtual address va. If alloc!=0, // create any required page table pages. static pte_t * walkpgdir(pde_t *pgdir, const void *va, uint l1attr, int alloc) { pde_t *pde; pte_t *pgtab; pde = &pgdir[PDX(va)]; if((uint)*pde != 0){ pgtab = (pte_t*)p2v(PTE_ADDR(*pde)); } else { if(!alloc || (pgtab = (pte_t*)kalloc()) == 0) return 0; // Make sure all those PTE_P bits are zero. memset(pgtab, 0, PGSIZE); // The permissions here are overly generous, but they can // be further restricted by the permissions in the page table // entries, if necessary. *pde = v2p(pgtab) | l1attr; //cprintf("the pde value is %x\n", (uint)*pde); } return &pgtab[PTX(va)]; } // Create PTEs for virtual addresses starting at va that refer to // physical addresses starting at pa. va and size might not // be page-aligned. static int mappages(pde_t *pgdir, void *va, uint size, uint pa, uint l1attr, uint l2attr) { char *a, *last; pte_t *pte; a = (char*)PGROUNDDOWN((uint)va); last = (char*)PGROUNDDOWN(((uint)va) + size - 1); //cprintf("size= %x a=%x last= %x pa=%x\n", size, a, last, pa); if((SECTION & l1attr) != 0){// for 1 MB pages for(;;){ if(a > last) break; if((uint)pgdir[PDX(a)] != 0) panic("remap"); pgdir[PDX(a)] = pa | l1attr; //cprintf("The pgdir entry: %x value: %x a=%x last= %x\n", PDX(a), pgdir[PDX(a)], a, last); a += MBYTE; pa += MBYTE; } } else if((COARSE & l1attr) != 0){// for 4kB pages for(;;){ //cprintf("The pgdir is %x value: %x a=%x last= %x\n", pgdir+PDX(a), pgdir[PDX(a)], a, last); if((pte = walkpgdir(pgdir, a, l1attr, 1)) == 0) return -1; if((uint)*pte != 0) panic("remap"); *pte = pa | l2attr; //cprintf("The pte value is %x, the pde values is %x\n", (uint)*pte, pgdir[PDX(a)]); if(a == last) break; a += PGSIZE; pa += PGSIZE; } } else panic("Unknown page attribute"); return 0; } // There is one page table per process, plus one that's used when // a CPU is not running any process (kpgdir). The kernel uses the // current process's page table during system calls and interrupts; // page protection bits prevent user code from using the kernel's // mappings. // // setupkvm() and exec() set up every page table like this: // // 0..KERNBASE: user memory (text+data+stack+heap), mapped to // phys memory allocated by the kernel // KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space) // KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data) // for the kernel's instructions and r/o data // data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP, // rw data + free physical memory // 0xfe000000..0: mapped direct (devices such as ioapic) // // The kernel allocates physical memory for its heap and for user memory // between V2P(end) and the end of physical memory (PHYSTOP) // (directly addressable from end..P2V(PHYSTOP)). // This table defines the kernel's mappings, which are present in // every process's page table. static struct kmap { void *virt; uint phys_start; uint phys_end; uint l1attr; uint l2attr; } kmap[] = { { (void*)KERNBASE, PA_START, PHYSTOP, DOMAIN0|PDX_AP(U_RW)|SECTION|CACHED|BUFFERED, 0}, { (void*)DEVSPACE, PHYSIO, PHYSIO+IOSIZE, DOMAIN0|PDX_AP(U_RW)|SECTION, 0}, { (void*)HVECTORS, PA_START, PA_START+TVSIZE, DOMAIN0|COARSE, PTX_AP(K_RW)|SMALL}, }; // Set up kernel part of a page table. // However, since the kernel part is shared, only the user part // of the pgd is allocated (one page only for simplicity, so user space // is now limited to 1GB pde_t* setupkvm(void) { pde_t *pgdir; if((pgdir = (pde_t*)kalloc()) == 0) return 0; //cprintf("inside setupkvm: pgdir=%x\n", pgdir); memset(pgdir, 0, PGSIZE); //cprintf("after memset\n", pgdir); return pgdir; } // Set up kernel part of a page table. pde_t* setupkvm_new(void) { pde_t *pgdir; struct kmap *k; /* if((pgdir = (pde_t*)kalloc()) == 0) return 0;*/ pgdir = kpgdir; memset(pgdir, 0, 4*PGSIZE); if (p2v(PHYSTOP) > (void*)DEVSPACE) panic("PHYSTOP too high"); for(k = kmap; k < &kmap[NELEM(kmap)]; k++) if(mappages(pgdir, k->virt, k->phys_end - k->phys_start, (uint)k->phys_start, k->l1attr, k->l2attr) < 0) return 0; return pgdir; } // Allocate one page table for the machine for the kernel address // space for scheduler processes. void kvmalloc(void) { kpgdir = setupkvm_new(); switchkvm(); } // Switch h/w page table register to the kernel-only page table, // for when no process is running. void switchkvm(void) { // do nothing here as the same pgdir is shared between kernel and user; // will see if the user portion of the pgdir should be removed. } void switchkvm_new(void) { dsb_barrier(); flush_idcache(); //cprintf("The phy pgtbase address is %x\n", (uint)v2p(kpgdir)); set_pgtbase((uint)v2p(kpgdir)); // switch to the kernel page table //cprintf("after set_pgtbase\n"); dsb_barrier(); flush_tlb(); //cprintf("after flush_tlb\n"); } // Switch TSS and h/w page table to correspond to process p. void switchuvm(struct proc *p) { pushcli(); //cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE; if(p->pgdir == 0) panic("switchuvm: no pgdir"); //cprintf("before copying uvm to kvm kpgdir=%x the first entry: %x\n", kpgdir, kpgdir[0]); memmove((void *)kpgdir, (void *)p->pgdir, PGSIZE); // switch to new user address space flush_idcache(); flush_tlb(); popcli(); } // Load the initcode into address 0 of pgdir. // sz must be less than a page. void inituvm(pde_t *pgdir, char *init, uint sz) { char *mem; if(sz >= PGSIZE) panic("inituvm: more than a page"); mem = kalloc(); memset(mem, 0, PGSIZE); //cprintf("inituvm: page is allocated at %x\n", mem); mappages(pgdir, 0, PGSIZE, v2p(mem), UVMPDXATTR, UVMPTXATTR); memmove(mem, init, sz); } // Load a program segment into pgdir. addr must be page-aligned // and the pages from addr to addr+sz must already be mapped. int loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) { uint i, pa, n; pte_t *pte; if((uint) addr % PGSIZE != 0) panic("loaduvm: addr must be page aligned"); if((uint)addr + sz > USERBOUND) panic("loaduvm: user address space exceeds the allowed space (> 0x80000000)"); for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, addr+i, UVMPDXATTR, 0)) == 0) panic("loaduvm: address should exist"); pa = PTE_ADDR(*pte); if(sz - i < PGSIZE) n = sz - i; else n = PGSIZE; if(readi(ip, p2v(pa), offset+i, n) != n) return -1; } return 0; } // Allocate page tables and physical memory to grow process from oldsz to // newsz, which need not be page aligned. Returns new size or 0 on error. int allocuvm(pde_t *pgdir, uint oldsz, uint newsz) { char *mem; uint a; if(newsz >= USERBOUND) return 0; if(newsz < oldsz) return oldsz; a = PGROUNDUP(oldsz); for(; a < newsz; a += PGSIZE){ mem = kalloc(); if(mem == 0){ cprintf("allocuvm out of memory\n"); deallocuvm(pgdir, newsz, oldsz); return 0; } memset(mem, 0, PGSIZE); mappages(pgdir, (char*)a, PGSIZE, v2p(mem), UVMPDXATTR, UVMPTXATTR); } return newsz; } // Deallocate user pages to bring the process size from oldsz to // newsz. oldsz and newsz need not be page-aligned, nor does newsz // need to be less than oldsz. oldsz can be larger than the actual // process size. Returns the new process size. int deallocuvm(pde_t *pgdir, uint oldsz, uint newsz) { pte_t *pte; uint a, pa; if(newsz >= oldsz) return oldsz; a = PGROUNDUP(newsz); for(; a < oldsz; a += PGSIZE){ pte = walkpgdir(pgdir, (char*)a, UVMPDXATTR, 0); if(!pte) a += (NPTENTRIES - 1) * PGSIZE; else if(*pte != 0){ pa = PTE_ADDR(*pte); if(pa == 0) panic("kfree"); char *v = p2v(pa); kfree(v); *pte = 0; } } return newsz; } // Free a page table and all the physical memory pages // in the user part. void freevm(pde_t *pgdir) { uint i; if(pgdir == 0) panic("freevm: no pgdir"); deallocuvm(pgdir, USERBOUND, 0); for(i = 0; i < NPDENTRIES; i++){ if((uint)pgdir[i] != 0){ char * v = p2v(PTE_ADDR(pgdir[i])); kfree(v); } } kfree((char*)pgdir); } // Clear PTE_U on a page. Used to create an inaccessible // page beneath the user stack. void clearpteu(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, UVMPDXATTR, 0); if(pte == 0) panic("clearpteu"); *pte &= ~PTX_AP(U_AP); } // Given a parent process's page table, create a copy // of it for a child. pde_t* copyuvm(pde_t *pgdir, uint sz) { pde_t *d; pte_t *pte; uint pa, i, flags; char *mem; if((d = setupkvm()) == 0) return 0; for(i = 0; i < sz; i += PGSIZE){ if((pte = walkpgdir(pgdir, (void *) i, UVMPDXATTR, 0)) == 0) panic("copyuvm: pte should exist"); if((uint)*pte == 0) panic("copyuvm: page not present"); pa = PTE_ADDR(*pte); flags = PTE_FLAGS(*pte); if((mem = kalloc()) == 0) goto bad; memmove(mem, (char*)p2v(pa), PGSIZE); if(mappages(d, (void*)i, PGSIZE, v2p(mem), UVMPDXATTR, flags) < 0) goto bad; } return d; bad: freevm(d); return 0; } //PAGEBREAK! // Map user virtual address to kernel address. char* uva2ka(pde_t *pgdir, char *uva) { pte_t *pte; pte = walkpgdir(pgdir, uva, UVMPDXATTR, 0); if((uint)*pte == 0) return 0; if(((uint)*pte & PTX_AP(U_AP)) == 0) return 0; return (char*)p2v(PTE_ADDR(*pte)); } // Copy len bytes from p to user address va in page table pgdir. // Most useful when pgdir is not the current page table. // uva2ka ensures this only works for PTE_U pages. int copyout(pde_t *pgdir, uint va, void *p, uint len) { char *buf, *pa0; uint n, va0; buf = (char*)p; while(len > 0){ va0 = (uint)PGROUNDDOWN(va); pa0 = uva2ka(pgdir, (char*)va0); if(pa0 == 0) return -1; n = PGSIZE - (va - va0); if(n > len) n = len; memmove(pa0 + (va - va0), buf, n); len -= n; buf += n; va = va0 + PGSIZE; } return 0; }