123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- // Copyright 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- //go:generate go run gen.go
- //go:generate asmfmt -w acc_amd64.s
- // asmfmt is https://github.com/klauspost/asmfmt
- // Package vector provides a rasterizer for 2-D vector graphics.
- package vector // import "golang.org/x/image/vector"
- // The rasterizer's design follows
- // https://medium.com/@raphlinus/inside-the-fastest-font-renderer-in-the-world-75ae5270c445
- //
- // Proof of concept code is in
- // https://github.com/google/font-go
- //
- // See also:
- // http://nothings.org/gamedev/rasterize/
- // http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
- // https://people.gnome.org/~mathieu/libart/internals.html#INTERNALS-SCANLINE
- import (
- "image"
- "image/color"
- "image/draw"
- "math"
- )
- // floatingPointMathThreshold is the width or height above which the rasterizer
- // chooses to used floating point math instead of fixed point math.
- //
- // Both implementations of line segmentation rasterization (see raster_fixed.go
- // and raster_floating.go) implement the same algorithm (in ideal, infinite
- // precision math) but they perform differently in practice. The fixed point
- // math version is roughtly 1.25x faster (on GOARCH=amd64) on the benchmarks,
- // but at sufficiently large scales, the computations will overflow and hence
- // show rendering artifacts. The floating point math version has more
- // consistent quality over larger scales, but it is significantly slower.
- //
- // This constant determines when to use the faster implementation and when to
- // use the better quality implementation.
- //
- // The rationale for this particular value is that TestRasterizePolygon in
- // vector_test.go checks the rendering quality of polygon edges at various
- // angles, inscribed in a circle of diameter 512. It may be that a higher value
- // would still produce acceptable quality, but 512 seems to work.
- const floatingPointMathThreshold = 512
- func lerp(t, px, py, qx, qy float32) (x, y float32) {
- return px + t*(qx-px), py + t*(qy-py)
- }
- func clamp(i, width int32) uint {
- if i < 0 {
- return 0
- }
- if i < width {
- return uint(i)
- }
- return uint(width)
- }
- // NewRasterizer returns a new Rasterizer whose rendered mask image is bounded
- // by the given width and height.
- func NewRasterizer(w, h int) *Rasterizer {
- z := &Rasterizer{}
- z.Reset(w, h)
- return z
- }
- // Raster is a 2-D vector graphics rasterizer.
- //
- // The zero value is usable, in that it is a Rasterizer whose rendered mask
- // image has zero width and zero height. Call Reset to change its bounds.
- type Rasterizer struct {
- // bufXxx are buffers of float32 or uint32 values, holding either the
- // individual or cumulative area values.
- //
- // We don't actually need both values at any given time, and to conserve
- // memory, the integration of the individual to the cumulative could modify
- // the buffer in place. In other words, we could use a single buffer, say
- // of type []uint32, and add some math.Float32bits and math.Float32frombits
- // calls to satisfy the compiler's type checking. As of Go 1.7, though,
- // there is a performance penalty between:
- // bufF32[i] += x
- // and
- // bufU32[i] = math.Float32bits(x + math.Float32frombits(bufU32[i]))
- //
- // See golang.org/issue/17220 for some discussion.
- bufF32 []float32
- bufU32 []uint32
- useFloatingPointMath bool
- size image.Point
- firstX float32
- firstY float32
- penX float32
- penY float32
- // DrawOp is the operator used for the Draw method.
- //
- // The zero value is draw.Over.
- DrawOp draw.Op
- // TODO: an exported field equivalent to the mask point in the
- // draw.DrawMask function in the stdlib image/draw package?
- }
- // Reset resets a Rasterizer as if it was just returned by NewRasterizer.
- //
- // This includes setting z.DrawOp to draw.Over.
- func (z *Rasterizer) Reset(w, h int) {
- z.size = image.Point{w, h}
- z.firstX = 0
- z.firstY = 0
- z.penX = 0
- z.penY = 0
- z.DrawOp = draw.Over
- z.setUseFloatingPointMath(w > floatingPointMathThreshold || h > floatingPointMathThreshold)
- }
- func (z *Rasterizer) setUseFloatingPointMath(b bool) {
- z.useFloatingPointMath = b
- // Make z.bufF32 or z.bufU32 large enough to hold width * height samples.
- if z.useFloatingPointMath {
- if n := z.size.X * z.size.Y; n > cap(z.bufF32) {
- z.bufF32 = make([]float32, n)
- } else {
- z.bufF32 = z.bufF32[:n]
- for i := range z.bufF32 {
- z.bufF32[i] = 0
- }
- }
- } else {
- if n := z.size.X * z.size.Y; n > cap(z.bufU32) {
- z.bufU32 = make([]uint32, n)
- } else {
- z.bufU32 = z.bufU32[:n]
- for i := range z.bufU32 {
- z.bufU32[i] = 0
- }
- }
- }
- }
- // Size returns the width and height passed to NewRasterizer or Reset.
- func (z *Rasterizer) Size() image.Point {
- return z.size
- }
- // Bounds returns the rectangle from (0, 0) to the width and height passed to
- // NewRasterizer or Reset.
- func (z *Rasterizer) Bounds() image.Rectangle {
- return image.Rectangle{Max: z.size}
- }
- // Pen returns the location of the path-drawing pen: the last argument to the
- // most recent XxxTo call.
- func (z *Rasterizer) Pen() (x, y float32) {
- return z.penX, z.penY
- }
- // ClosePath closes the current path.
- func (z *Rasterizer) ClosePath() {
- z.LineTo(z.firstX, z.firstY)
- }
- // MoveTo starts a new path and moves the pen to (ax, ay).
- //
- // The coordinates are allowed to be out of the Rasterizer's bounds.
- func (z *Rasterizer) MoveTo(ax, ay float32) {
- z.firstX = ax
- z.firstY = ay
- z.penX = ax
- z.penY = ay
- }
- // LineTo adds a line segment, from the pen to (bx, by), and moves the pen to
- // (bx, by).
- //
- // The coordinates are allowed to be out of the Rasterizer's bounds.
- func (z *Rasterizer) LineTo(bx, by float32) {
- if z.useFloatingPointMath {
- z.floatingLineTo(bx, by)
- } else {
- z.fixedLineTo(bx, by)
- }
- }
- // QuadTo adds a quadratic Bézier segment, from the pen via (bx, by) to (cx,
- // cy), and moves the pen to (cx, cy).
- //
- // The coordinates are allowed to be out of the Rasterizer's bounds.
- func (z *Rasterizer) QuadTo(bx, by, cx, cy float32) {
- ax, ay := z.penX, z.penY
- devsq := devSquared(ax, ay, bx, by, cx, cy)
- if devsq >= 0.333 {
- const tol = 3
- n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
- t, nInv := float32(0), 1/float32(n)
- for i := 0; i < n-1; i++ {
- t += nInv
- abx, aby := lerp(t, ax, ay, bx, by)
- bcx, bcy := lerp(t, bx, by, cx, cy)
- z.LineTo(lerp(t, abx, aby, bcx, bcy))
- }
- }
- z.LineTo(cx, cy)
- }
- // CubeTo adds a cubic Bézier segment, from the pen via (bx, by) and (cx, cy)
- // to (dx, dy), and moves the pen to (dx, dy).
- //
- // The coordinates are allowed to be out of the Rasterizer's bounds.
- func (z *Rasterizer) CubeTo(bx, by, cx, cy, dx, dy float32) {
- ax, ay := z.penX, z.penY
- devsq := devSquared(ax, ay, bx, by, dx, dy)
- if devsqAlt := devSquared(ax, ay, cx, cy, dx, dy); devsq < devsqAlt {
- devsq = devsqAlt
- }
- if devsq >= 0.333 {
- const tol = 3
- n := 1 + int(math.Sqrt(math.Sqrt(tol*float64(devsq))))
- t, nInv := float32(0), 1/float32(n)
- for i := 0; i < n-1; i++ {
- t += nInv
- abx, aby := lerp(t, ax, ay, bx, by)
- bcx, bcy := lerp(t, bx, by, cx, cy)
- cdx, cdy := lerp(t, cx, cy, dx, dy)
- abcx, abcy := lerp(t, abx, aby, bcx, bcy)
- bcdx, bcdy := lerp(t, bcx, bcy, cdx, cdy)
- z.LineTo(lerp(t, abcx, abcy, bcdx, bcdy))
- }
- }
- z.LineTo(dx, dy)
- }
- // devSquared returns a measure of how curvy the sequence (ax, ay) to (bx, by)
- // to (cx, cy) is. It determines how many line segments will approximate a
- // Bézier curve segment.
- //
- // http://lists.nongnu.org/archive/html/freetype-devel/2016-08/msg00080.html
- // gives the rationale for this evenly spaced heuristic instead of a recursive
- // de Casteljau approach:
- //
- // The reason for the subdivision by n is that I expect the "flatness"
- // computation to be semi-expensive (it's done once rather than on each
- // potential subdivision) and also because you'll often get fewer subdivisions.
- // Taking a circular arc as a simplifying assumption (ie a spherical cow),
- // where I get n, a recursive approach would get 2^⌈lg n⌉, which, if I haven't
- // made any horrible mistakes, is expected to be 33% more in the limit.
- func devSquared(ax, ay, bx, by, cx, cy float32) float32 {
- devx := ax - 2*bx + cx
- devy := ay - 2*by + cy
- return devx*devx + devy*devy
- }
- // Draw implements the Drawer interface from the standard library's image/draw
- // package.
- //
- // The vector paths previously added via the XxxTo calls become the mask for
- // drawing src onto dst.
- func (z *Rasterizer) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
- // TODO: adjust r and sp (and mp?) if src.Bounds() doesn't contain
- // r.Add(sp.Sub(r.Min)).
- if src, ok := src.(*image.Uniform); ok {
- srcR, srcG, srcB, srcA := src.RGBA()
- switch dst := dst.(type) {
- case *image.Alpha:
- // Fast path for glyph rendering.
- if srcA == 0xffff {
- if z.DrawOp == draw.Over {
- z.rasterizeDstAlphaSrcOpaqueOpOver(dst, r)
- } else {
- z.rasterizeDstAlphaSrcOpaqueOpSrc(dst, r)
- }
- return
- }
- case *image.RGBA:
- if z.DrawOp == draw.Over {
- z.rasterizeDstRGBASrcUniformOpOver(dst, r, srcR, srcG, srcB, srcA)
- } else {
- z.rasterizeDstRGBASrcUniformOpSrc(dst, r, srcR, srcG, srcB, srcA)
- }
- return
- }
- }
- if z.DrawOp == draw.Over {
- z.rasterizeOpOver(dst, r, src, sp)
- } else {
- z.rasterizeOpSrc(dst, r, src, sp)
- }
- }
- func (z *Rasterizer) accumulateMask() {
- if z.useFloatingPointMath {
- if n := z.size.X * z.size.Y; n > cap(z.bufU32) {
- z.bufU32 = make([]uint32, n)
- } else {
- z.bufU32 = z.bufU32[:n]
- }
- if haveAccumulateSIMD {
- floatingAccumulateMaskSIMD(z.bufU32, z.bufF32)
- } else {
- floatingAccumulateMask(z.bufU32, z.bufF32)
- }
- } else {
- if haveAccumulateSIMD {
- fixedAccumulateMaskSIMD(z.bufU32)
- } else {
- fixedAccumulateMask(z.bufU32)
- }
- }
- }
- func (z *Rasterizer) rasterizeDstAlphaSrcOpaqueOpOver(dst *image.Alpha, r image.Rectangle) {
- // TODO: non-zero vs even-odd winding?
- if r == dst.Bounds() && r == z.Bounds() {
- // We bypass the z.accumulateMask step and convert straight from
- // z.bufF32 or z.bufU32 to dst.Pix.
- if z.useFloatingPointMath {
- if haveAccumulateSIMD {
- floatingAccumulateOpOverSIMD(dst.Pix, z.bufF32)
- } else {
- floatingAccumulateOpOver(dst.Pix, z.bufF32)
- }
- } else {
- if haveAccumulateSIMD {
- fixedAccumulateOpOverSIMD(dst.Pix, z.bufU32)
- } else {
- fixedAccumulateOpOver(dst.Pix, z.bufU32)
- }
- }
- return
- }
- z.accumulateMask()
- pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- ma := z.bufU32[y*z.size.X+x]
- i := y*dst.Stride + x
- // This formula is like rasterizeOpOver's, simplified for the
- // concrete dst type and opaque src assumption.
- a := 0xffff - ma
- pix[i] = uint8((uint32(pix[i])*0x101*a/0xffff + ma) >> 8)
- }
- }
- }
- func (z *Rasterizer) rasterizeDstAlphaSrcOpaqueOpSrc(dst *image.Alpha, r image.Rectangle) {
- // TODO: non-zero vs even-odd winding?
- if r == dst.Bounds() && r == z.Bounds() {
- // We bypass the z.accumulateMask step and convert straight from
- // z.bufF32 or z.bufU32 to dst.Pix.
- if z.useFloatingPointMath {
- if haveAccumulateSIMD {
- floatingAccumulateOpSrcSIMD(dst.Pix, z.bufF32)
- } else {
- floatingAccumulateOpSrc(dst.Pix, z.bufF32)
- }
- } else {
- if haveAccumulateSIMD {
- fixedAccumulateOpSrcSIMD(dst.Pix, z.bufU32)
- } else {
- fixedAccumulateOpSrc(dst.Pix, z.bufU32)
- }
- }
- return
- }
- z.accumulateMask()
- pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- ma := z.bufU32[y*z.size.X+x]
- // This formula is like rasterizeOpSrc's, simplified for the
- // concrete dst type and opaque src assumption.
- pix[y*dst.Stride+x] = uint8(ma >> 8)
- }
- }
- }
- func (z *Rasterizer) rasterizeDstRGBASrcUniformOpOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
- z.accumulateMask()
- pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- ma := z.bufU32[y*z.size.X+x]
- // This formula is like rasterizeOpOver's, simplified for the
- // concrete dst type and uniform src assumption.
- a := 0xffff - (sa * ma / 0xffff)
- i := y*dst.Stride + 4*x
- pix[i+0] = uint8(((uint32(pix[i+0])*0x101*a + sr*ma) / 0xffff) >> 8)
- pix[i+1] = uint8(((uint32(pix[i+1])*0x101*a + sg*ma) / 0xffff) >> 8)
- pix[i+2] = uint8(((uint32(pix[i+2])*0x101*a + sb*ma) / 0xffff) >> 8)
- pix[i+3] = uint8(((uint32(pix[i+3])*0x101*a + sa*ma) / 0xffff) >> 8)
- }
- }
- }
- func (z *Rasterizer) rasterizeDstRGBASrcUniformOpSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
- z.accumulateMask()
- pix := dst.Pix[dst.PixOffset(r.Min.X, r.Min.Y):]
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- ma := z.bufU32[y*z.size.X+x]
- // This formula is like rasterizeOpSrc's, simplified for the
- // concrete dst type and uniform src assumption.
- i := y*dst.Stride + 4*x
- pix[i+0] = uint8((sr * ma / 0xffff) >> 8)
- pix[i+1] = uint8((sg * ma / 0xffff) >> 8)
- pix[i+2] = uint8((sb * ma / 0xffff) >> 8)
- pix[i+3] = uint8((sa * ma / 0xffff) >> 8)
- }
- }
- }
- func (z *Rasterizer) rasterizeOpOver(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
- z.accumulateMask()
- out := color.RGBA64{}
- outc := color.Color(&out)
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
- ma := z.bufU32[y*z.size.X+x]
- // This algorithm comes from the standard library's image/draw
- // package.
- dr, dg, db, da := dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
- a := 0xffff - (sa * ma / 0xffff)
- out.R = uint16((dr*a + sr*ma) / 0xffff)
- out.G = uint16((dg*a + sg*ma) / 0xffff)
- out.B = uint16((db*a + sb*ma) / 0xffff)
- out.A = uint16((da*a + sa*ma) / 0xffff)
- dst.Set(r.Min.X+x, r.Min.Y+y, outc)
- }
- }
- }
- func (z *Rasterizer) rasterizeOpSrc(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
- z.accumulateMask()
- out := color.RGBA64{}
- outc := color.Color(&out)
- for y, y1 := 0, r.Max.Y-r.Min.Y; y < y1; y++ {
- for x, x1 := 0, r.Max.X-r.Min.X; x < x1; x++ {
- sr, sg, sb, sa := src.At(sp.X+x, sp.Y+y).RGBA()
- ma := z.bufU32[y*z.size.X+x]
- // This algorithm comes from the standard library's image/draw
- // package.
- out.R = uint16(sr * ma / 0xffff)
- out.G = uint16(sg * ma / 0xffff)
- out.B = uint16(sb * ma / 0xffff)
- out.A = uint16(sa * ma / 0xffff)
- dst.Set(r.Min.X+x, r.Min.Y+y, outc)
- }
- }
- }
|