123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- #version 310 es
- // SPDX-License-Identifier: Unlicense OR MIT
- precision mediump float;
- layout(location=0) in highp vec2 vFrom;
- layout(location=1) in highp vec2 vCtrl;
- layout(location=2) in highp vec2 vTo;
- layout(location = 0) out vec4 fragCover;
- void main() {
- float dx = vTo.x - vFrom.x;
- // Sort from and to in increasing order so the root below
- // is always the positive square root, if any.
- // We need the direction of the curve below, so this can't be
- // done from the vertex shader.
- bool increasing = vTo.x >= vFrom.x;
- vec2 left = increasing ? vFrom : vTo;
- vec2 right = increasing ? vTo : vFrom;
- // The signed horizontal extent of the fragment.
- vec2 extent = clamp(vec2(vFrom.x, vTo.x), -0.5, 0.5);
- // Find the t where the curve crosses the middle of the
- // extent, x₀.
- // Given the Bézier curve with x coordinates P₀, P₁, P₂
- // where P₀ is at the origin, its x coordinate in t
- // is given by:
- //
- // x(t) = 2(1-t)tP₁ + t²P₂
- //
- // Rearranging:
- //
- // x(t) = (P₂ - 2P₁)t² + 2P₁t
- //
- // Setting x(t) = x₀ and using Muller's quadratic formula ("Citardauq")
- // for robustnesss,
- //
- // t = 2x₀/(2P₁±√(4P₁²+4(P₂-2P₁)x₀))
- //
- // which simplifies to
- //
- // t = x₀/(P₁±√(P₁²+(P₂-2P₁)x₀))
- //
- // Setting v = P₂-P₁,
- //
- // t = x₀/(P₁±√(P₁²+(v-P₁)x₀))
- //
- // t lie in [0; 1]; P₂ ≥ P₁ and P₁ ≥ 0 since we split curves where
- // the control point lies before the start point or after the end point.
- // It can then be shown that only the positive square root is valid.
- float midx = mix(extent.x, extent.y, 0.5);
- float x0 = midx - left.x;
- vec2 p1 = vCtrl - left;
- vec2 v = right - vCtrl;
- float t = x0/(p1.x+sqrt(p1.x*p1.x+(v.x-p1.x)*x0));
- // Find y(t) on the curve.
- float y = mix(mix(left.y, vCtrl.y, t), mix(vCtrl.y, right.y, t), t);
- // And the slope.
- vec2 d_half = mix(p1, v, t);
- float dy = d_half.y/d_half.x;
- // Together, y and dy form a line approximation.
- // Compute the fragment area above the line.
- // The area is symmetric around dy = 0. Scale slope with extent width.
- float width = extent.y - extent.x;
- dy = abs(dy*width);
- vec4 sides = vec4(dy*+0.5 + y, dy*-0.5 + y, (+0.5-y)/dy, (-0.5-y)/dy);
- sides = clamp(sides+0.5, 0.0, 1.0);
- float area = 0.5*(sides.z - sides.z*sides.y + 1.0 - sides.x+sides.x*sides.w);
- area *= width;
- // Work around issue #13.
- if (width == 0.0)
- area = 0.0;
- fragCover.r = area;
- }
|