123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- // SPDX-License-Identifier: Unlicense OR MIT
- package fling
- import (
- "math"
- "strconv"
- "strings"
- "time"
- )
- // Extrapolation computes a 1-dimensional velocity estimate
- // for a set of timestamped points using the least squares
- // fit of a 2nd order polynomial. The same method is used
- // by Android.
- type Extrapolation struct {
- // Index into points.
- idx int
- // Circular buffer of samples.
- samples []sample
- lastValue float32
- // Pre-allocated cache for samples.
- cache [historySize]sample
- // Filtered values and times
- values [historySize]float32
- times [historySize]float32
- }
- type sample struct {
- t time.Duration
- v float32
- }
- type matrix struct {
- rows, cols int
- data []float32
- }
- type Estimate struct {
- Velocity float32
- Distance float32
- }
- type coefficients [degree + 1]float32
- const (
- degree = 2
- historySize = 20
- maxAge = 100 * time.Millisecond
- maxSampleGap = 40 * time.Millisecond
- )
- // SampleDelta adds a relative sample to the estimation.
- func (e *Extrapolation) SampleDelta(t time.Duration, delta float32) {
- val := delta + e.lastValue
- e.Sample(t, val)
- }
- // Sample adds an absolute sample to the estimation.
- func (e *Extrapolation) Sample(t time.Duration, val float32) {
- e.lastValue = val
- if e.samples == nil {
- e.samples = e.cache[:0]
- }
- s := sample{
- t: t,
- v: val,
- }
- if e.idx == len(e.samples) && e.idx < cap(e.samples) {
- e.samples = append(e.samples, s)
- } else {
- e.samples[e.idx] = s
- }
- e.idx++
- if e.idx == cap(e.samples) {
- e.idx = 0
- }
- }
- // Velocity returns an estimate of the implied velocity and
- // distance for the points sampled, or zero if the estimation method
- // failed.
- func (e *Extrapolation) Estimate() Estimate {
- if len(e.samples) == 0 {
- return Estimate{}
- }
- values := e.values[:0]
- times := e.times[:0]
- first := e.get(0)
- t := first.t
- // Walk backwards collecting samples.
- for i := 0; i < len(e.samples); i++ {
- p := e.get(-i)
- age := first.t - p.t
- if age >= maxAge || t-p.t >= maxSampleGap {
- // If the samples are too old or
- // too much time passed between samples
- // assume they're not part of the fling.
- break
- }
- t = p.t
- values = append(values, first.v-p.v)
- times = append(times, float32((-age).Seconds()))
- }
- coef, ok := polyFit(times, values)
- if !ok {
- return Estimate{}
- }
- dist := values[len(values)-1] - values[0]
- return Estimate{
- Velocity: coef[1],
- Distance: dist,
- }
- }
- func (e *Extrapolation) get(i int) sample {
- idx := (e.idx + i - 1 + len(e.samples)) % len(e.samples)
- return e.samples[idx]
- }
- // fit computes the least squares polynomial fit for
- // the set of points in X, Y. If the fitting fails
- // because of contradicting or insufficient data,
- // fit returns false.
- func polyFit(X, Y []float32) (coefficients, bool) {
- if len(X) != len(Y) {
- panic("X and Y lengths differ")
- }
- if len(X) <= degree {
- // Not enough points to fit a curve.
- return coefficients{}, false
- }
- // Use a method similar to Android's VelocityTracker.cpp:
- // https://android.googlesource.com/platform/frameworks/base/+/56a2301/libs/androidfw/VelocityTracker.cpp
- // where all weights are 1.
- // First, expand the X vector to the matrix A in column-major order.
- A := newMatrix(degree+1, len(X))
- for i, x := range X {
- A.set(0, i, 1)
- for j := 1; j < A.rows; j++ {
- A.set(j, i, A.get(j-1, i)*x)
- }
- }
- Q, Rt, ok := decomposeQR(A)
- if !ok {
- return coefficients{}, false
- }
- // Solve R*B = Qt*Y for B, which is then the polynomial coefficients.
- // Since R is upper triangular, we can proceed from bottom right to
- // upper left.
- // https://en.wikipedia.org/wiki/Non-linear_least_squares
- var B coefficients
- for i := Q.rows - 1; i >= 0; i-- {
- B[i] = dot(Q.col(i), Y)
- for j := Q.rows - 1; j > i; j-- {
- B[i] -= Rt.get(i, j) * B[j]
- }
- B[i] /= Rt.get(i, i)
- }
- return B, true
- }
- // decomposeQR computes and returns Q, Rt where Q*transpose(Rt) = A, if
- // possible. R is guaranteed to be upper triangular and only the square
- // part of Rt is returned.
- func decomposeQR(A *matrix) (*matrix, *matrix, bool) {
- // Gram-Schmidt QR decompose A where Q*R = A.
- // https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
- Q := newMatrix(A.rows, A.cols) // Column-major.
- Rt := newMatrix(A.rows, A.rows) // R transposed, row-major.
- for i := 0; i < Q.rows; i++ {
- // Copy A column.
- for j := 0; j < Q.cols; j++ {
- Q.set(i, j, A.get(i, j))
- }
- // Subtract projections. Note that int the projection
- //
- // proju a = <u, a>/<u, u> u
- //
- // the normalized column e replaces u, where <e, e> = 1:
- //
- // proje a = <e, a>/<e, e> e = <e, a> e
- for j := 0; j < i; j++ {
- d := dot(Q.col(j), Q.col(i))
- for k := 0; k < Q.cols; k++ {
- Q.set(i, k, Q.get(i, k)-d*Q.get(j, k))
- }
- }
- // Normalize Q columns.
- n := norm(Q.col(i))
- if n < 0.000001 {
- // Degenerate data, no solution.
- return nil, nil, false
- }
- invNorm := 1 / n
- for j := 0; j < Q.cols; j++ {
- Q.set(i, j, Q.get(i, j)*invNorm)
- }
- // Update Rt.
- for j := i; j < Rt.cols; j++ {
- Rt.set(i, j, dot(Q.col(i), A.col(j)))
- }
- }
- return Q, Rt, true
- }
- func norm(V []float32) float32 {
- var n float32
- for _, v := range V {
- n += v * v
- }
- return float32(math.Sqrt(float64(n)))
- }
- func dot(V1, V2 []float32) float32 {
- var d float32
- for i, v1 := range V1 {
- d += v1 * V2[i]
- }
- return d
- }
- func newMatrix(rows, cols int) *matrix {
- return &matrix{
- rows: rows,
- cols: cols,
- data: make([]float32, rows*cols),
- }
- }
- func (m *matrix) set(row, col int, v float32) {
- if row < 0 || row >= m.rows {
- panic("row out of range")
- }
- if col < 0 || col >= m.cols {
- panic("col out of range")
- }
- m.data[row*m.cols+col] = v
- }
- func (m *matrix) get(row, col int) float32 {
- if row < 0 || row >= m.rows {
- panic("row out of range")
- }
- if col < 0 || col >= m.cols {
- panic("col out of range")
- }
- return m.data[row*m.cols+col]
- }
- func (m *matrix) col(c int) []float32 {
- return m.data[c*m.cols : (c+1)*m.cols]
- }
- func (m *matrix) approxEqual(m2 *matrix) bool {
- if m.rows != m2.rows || m.cols != m2.cols {
- return false
- }
- const epsilon = 0.00001
- for row := 0; row < m.rows; row++ {
- for col := 0; col < m.cols; col++ {
- d := m2.get(row, col) - m.get(row, col)
- if d < -epsilon || d > epsilon {
- return false
- }
- }
- }
- return true
- }
- func (m *matrix) transpose() *matrix {
- t := &matrix{
- rows: m.cols,
- cols: m.rows,
- data: make([]float32, len(m.data)),
- }
- for i := 0; i < m.rows; i++ {
- for j := 0; j < m.cols; j++ {
- t.set(j, i, m.get(i, j))
- }
- }
- return t
- }
- func (m *matrix) mul(m2 *matrix) *matrix {
- if m.rows != m2.cols {
- panic("mismatched matrices")
- }
- mm := &matrix{
- rows: m.rows,
- cols: m2.cols,
- data: make([]float32, m.rows*m2.cols),
- }
- for i := 0; i < mm.rows; i++ {
- for j := 0; j < mm.cols; j++ {
- var v float32
- for k := 0; k < m.rows; k++ {
- v += m.get(k, j) * m2.get(i, k)
- }
- mm.set(i, j, v)
- }
- }
- return mm
- }
- func (m *matrix) String() string {
- var b strings.Builder
- for i := 0; i < m.rows; i++ {
- for j := 0; j < m.cols; j++ {
- v := m.get(i, j)
- b.WriteString(strconv.FormatFloat(float64(v), 'g', -1, 32))
- b.WriteString(", ")
- }
- b.WriteString("\n")
- }
- return b.String()
- }
- func (c coefficients) approxEqual(c2 coefficients) bool {
- const epsilon = 0.00001
- for i, v := range c {
- d := v - c2[i]
- if d < -epsilon || d > epsilon {
- return false
- }
- }
- return true
- }
|